Performance of the line-by-line radiative transfer model (LBLRTM) for satellite retrievals of temperature and water vapor: Recent spectroscopy updates evaluated using IASI case studies

M.J. Alvarado¹, V.H. Payne², **E.J. Mlawer**¹, G. Uymin¹, M.W. Shephard³, K.E. Cady-Pereira¹, J. Delamere^{1,4}, and J.-L. Moncet¹ ¹Atmospheric and Environmental Research ²Jet Propulsion Laboratory ³Atmospheric and Climate Applications ⁴Now at Tech-X

Joint Center for Satellite Data Assimilation Workshop October 10, 2012

Poster Alert

P19. Development of an OSS version of the CRTM (CRTM-OSS)

J.-L. Moncet – AER

Improving Spectroscopy for Satellite Data Assimilation

- Satellite data assimilation depends on accurate IR spectroscopy
 - Reducing uncertainties in spectroscopic line parameters and continua is critical to improving the use of satellite data in numerical weather prediction (NWP) and climate models.
- AER's Line-by-Line Radiative Transfer Model (LBLRTM, Clough et al., 2005)
 - Traces its heritage to FASCODE, developed for Air Force by Clough and collaborators
 - Reference standard for model intercomparisons in the thermal IR (e.g., CCMVal, CIRC)
 - Basis of retrieval algorithms for AERI, IASI, and TES
 - Used to train fast models in the Joint Center for Satellite Data Analysis Community Radiative Transfer Model (e.g., OPTRAN, OSS)
- Here we present the results of a rigorous validation of recent spectroscopic updates to LBLRTM against a global dataset of 128 near-nadir measurements from IASI.
 - Expands JAIVEx study of Shephard et al., ACP, 2009
- We compare the performance of LBLRTM v12.1 to a previous version (LBLRTM v9.4+) to test the impact of the latest updates to the line parameters and the CO₂ and H₂O continua (including the addition of P- and R-branch line coupling for CO₂).

Spectroscopy in LBLRTM v9.4+ (released January 2005)

HITRAN 2000 (Rothman et al., 2003) along with:

- CO₂ Q-branch line coupling based on Hoke et al. (1989) and Strow et al. (1994).
- CH₄ (922.65-1678.33 cm⁻¹) and CO supplied by Linda Brown (JPL)
- O₃ from Wagner *et al.*, 2002.
- MT_CKD v1.2 Continuum

LBLRTM v9.4+ had significant problems in the CO_2 V_2 band (top) as well as at the V_3 bandhead (bottom).

Spectroscopy in LBLRTM v12.1 (released November 2011, available at rtweb.aer.com)

HITRAN 2008 (Rothman et al., 2009) along with:

- · CO₂
 - Lamouroux et al. (2010) first order line coupling parameter (P-,Q-, and R-branches).
 - Line intensities and positions (597-2500 cm⁻¹) from the Carbon Dioxide Spectral Database (Tashkun *et al.*, 2003; Flaud *et al.*, 2003).
- H₂O
 - Positions and intensities (10-2500 cm⁻¹): Coudert et al. (2008).
- CH₄
 - HITRAN 2008 with first-order line coupling for v_4 and v_3 bands: Tran *et al.*, 2006
- MT_CKD v2.5.2 Continuum
 - Updates to CO₂ and self-broadened H₂O in the 2400 cm⁻¹ region: Mlawer et al., 2012

IASI Closure Study Methodology

We use 128 clear-sky, nighttime, over ocean IASI profiles (a subset of Matricardi, 2009) to minimize potential errors from clouds, surface emissivity, and NLTE effects.

Systematic spectral residuals after retrievals indicate errors in the spectroscopy.

A priori profiles:

- Temperature: ECMWF adjusted between 10 mbar and 0.1 mbar (Masiello *et al.*, 2011).
- H₂O: ECMWF model.
- O₃: ECMWF model scaled by OMI.
- CO₂, N₂O, CH₄, and CO: Aura TES climatology

Schematic of the retrieval procedure.
The dashed arrows show additional retrievals performed to assess the consistency of CO₂ in the IASI spectral range.

The addition of P- and R-branch line coupling improved performance in the v_2 band of CO_2

IASI Scan #754

Mean Residuals LBLRTM v12.1

The addition of P- and R-branch line coupling improved performance in the v_2 band of CO_2

IASI Scan #754

Mean Residuals LBLRTM v12.1

The addition of P- and R-branch line coupling improved performance in the v_2 band of CO_2

IASI Scan #754

Mean Residuals LBLRTM v12.1

These spectroscopy updates alter the temperature profiles retrieved using the ν_2

band

Right: Mean and std.
dev. of the
differences between
the temperature
profiles retrieved with
LBLRTM v12.1 and
v9.4+. Only the 123
cases that converged
for all four model/band
combinations are
included.

Updates to the MT_CKD continuum have improved performance at the v₃ bandhead

Note that green v_3 region was not used in temperature retrievals here

IASI Scan #754

Mean Residuals (1-m)/ster/www.

Mean Residuals (1-12) LBLRTM v9.4+

The v_2 and v_3 temperature retrievals in LBLRTM v12.1 are remarkably consistent.

Mean and std. dev. of
the differences between
the retrieved
temperature profiles.
Only the 123 cases that
converged for all four
model/band combinations
are included.
Right panel: the v₂
retrieval was smoothed
with the v₃ averaging
kernel and
retrieval(Rodgers and
Connor, 2003).

The v_2 and v_3 temperature retrievals in LBLRTM v12.1 are remarkably consistent.

Mean and std. dev. of the differences between the retrieved temperature profiles.
Only the 123 cases that converged for all four model/band combinations are included.
Right panel: the v₂ retrieval was smoothed with the v₃ averaging kernel and retrieval(Rodgers and Connor, 2003).

Residuals in the $H_2O v_2$ band are improved, especially in P-branch

IASI Scan #754

Mean Residuals LBLRTM v12.1

Constant HDO/H₂O ratio creates bias in P-branch residuals for high water vapor cases

Updated H₂O spectroscopy in LBLRTM v12.1 impacts retrieved H₂O profiles

Right: Mean and std.
dev. of the ratio
between the H₂O
profiles retrieved with
LBLRTM v12.1 and
v9.4+. Only the 122
cases that converged
for temperature and
H₂O in both models are
included.

R-branch provides more information about near-surface H₂O for moist atmospheres

Additional information from R-branch only alters retrieved profile near surface

Mean and std. dev. of the ratio between the LBLRTM v12.1 retrieved H₂O profiles when P-branch alone is used versus when P- and R-branch are used. All 128 cases are included.

Residuals in the 616 JCSDA assimilated IASI channels are substantially improved

IASI Scan #754

Mean Residuals LBLRTM v12.1

Updates in CH₄ spectroscopy don't clearly improve residuals

IASI Scan #754

Mean Residuals LBLRTM v12.1

New spectroscopy reduces the bias in retrieved CH₄ profiles TES V005 – HIPPO CH₄ (ppb)

Wecht et al., ACP, 2012

Increases in the H₂O self continuum degrade performance in the CO fundamental band

IASI Scan #754

Mean Residuals () style | Mean Residuals ()

Conclusions

- The improved CO₂ spectroscopy in LBLRTM v12.1 can alter the retrieved temperature profiles by 0.5 K or more.
- The LBLRTM v12.1 CO₂ spectroscopy is remarkably consistent between the CO₂ v₂ and v₃ bands.
 - Systematic residuals remain in the v₂ Q-branches and at the v₃ bandhead.
- The H₂O spectroscopy is improved in both the P- and Rbranches of the v₂ band in LBLRTM v12.1, but significant systematic residuals remain.
 - Using a more realistic, vertically-varying HDO profile may reduce the P-branch mean residuals for scans with high water vapor.
- The LBLRTM v12.1 CH₄ spectroscopy reduces the high bias in the retrieved profiles, but does not clearly improve the spectral residuals.
- Increases in the H₂O self continuum in LBLRTM v12.1 lead to degraded performance in the CO fundamental band.

Acknowledgements

- S. A. Clough, Clough Radiation Associates
- Marco Matricardi, ECMWF
- Robert Gamache, U. Mass. Lowell
- Jean-Michel Hartmann, CNRS
- Linda Brown, JPL
- Kevin Wecht, Harvard
- Joint Center for Satellite Data Assimilation (JCSDA)
- NASA
- Tropospheric Emission Spectrometer (TES) Science Team

